Status report for MINOS DB test

e Svetlana increased the max connection limit on dev1 and test performed on 05/11/17
Submitted 1000 test jobs with dev1 vs. dev2 / Production group used dev3 in parallel
Efficiencies were under 10%, found that CPU core processes were not enough to handle

* Increased the number of CPU core processes from 4 to 8 in dev1, dev2, dev3 on 05/15/17

* Tests performed with changes, results summarized next slide

Change in dev1 for the test

1. Disable DNS lookups: it takes time for each connection to reverse the host DNS name

2. We can decrease wait_timeout to control the Idle connections (“sleep” status)
Currently wait_timeout=300, we can try wait_timeout=60
Idle connections consume resources and should be either closed promptly in the application or timed
out and closed automatically.

3. These parameters are no harm:
connect_timeout = 900
net read timeout = 600
net_write_timeout = 600
they control hanging connections to close automatically.

4. increase tmp_table size and max_heap table size from 32M
64M to avoid/minimize the disk writes

5. increase query_cache_size from 32M to 64M

6. We can increase innodb_buffer_pool_size from 122M to 1GB - to ensure that ~60-80% of your working
set is in memory.

7. We do not use MyISAM explicitly, so we can decrease key buffer_size from 16M to 64K

8. We can ask sysadminto disable swap on the disk: sysctl -w vm.swappiness=0
(I have no permissions to execute this command)

9. And finally increase thread_cache_size from 8 to 16

Color code : 1000 jobs with dev2, 500 jobs with dev(VIP), 500 jobs with dev1, 500 jobs with dev2

User & Overall Efficiency Average Wasted Time (Walltime-Cputime) per Running Job
> < > < =8 fhowr ' > < > < >

s «—> <
5% 2.1 hour
50% 1.4 hour
25% 42 min
"o\l/
0% e

o 0ns
9/16 08:00 5/16 16:00 517 00:00 5/17 08:00 5/17 16:00 5/18 00:00 5/16 08:00 5/16 16:00 5/17 00:00 5/17 08:00 5/17 16:00 5/18 00:00

- Overall == gbercell == aghosh12 drut1186 == finer == Overall == gbercell == aghosh12 bmesser drut1186 == finer == gonzalo

== Decerra —jyhan == minervaca minervadat ninervapro == gultana == Decerra —jyhan == minervacs ninervagal == minervapro == guilana

- 9INC == WOospakrk - (ONC = WOSPDAKIK

Jobs Running by User

> < >

0
5/16 08:00 5/16 12:00 5/16 16:00 5/16 20:00 517 00:00 5/17 04:00 5/17 08:00 S/ 2:0 ' 517 20:00 5/18 00:00

nzalo == jbecerra -~ jyhan -~ minervacal == minervadat minervapro == norrick == sultana

Test performed after increasing CPU core processes from 4 to 8 in each node
Submitted 1000 jobs with dev2 — Efficiency was so low (~15%), removed ~400 jobs running
Decreased jobs down to 500 :

e Test with dev (Virtual IP) : efficiency started ~50% and went up to 75%, but still wasted time up to ~2.7h
¢ Test with dev1 (increased max connection) : efficiency started from 25%, then went up to 75%

e Test with dev2 (max connection is lower than dev1) : efficiency started from 50% and went up 75%

It seems that the increased max connection doesn’'t do much

Test with 1500 |jobs for scalability check

* 1500 jobs tested for scalability check
* 500 jobs submitted with dev1, dev2, dev3, respectively
* Performance with 500 jobs in each node (dev1, dev2) independently is show p2
1500 jobs with dev1, dev2, dev3

Color code : 1000 jobs with dev2, 500 jobs with dev(VIP), 500 jobs with dev1, 500 jobs with dev2

User & Overall Efficiency Average Wasted Time (Walltime-Cputime) per Running Job
28 hour <S>« o >« >

2.1 hour

1.4 hour
42 min
- n ‘

5 — Ons
516 12:00 517 00:00 5171200 518 00:00 518 12:00 519 00:00 SAB6 1200 S5N70000 5171200 5180000 55181200 519 00:00

i::‘ - 20 "AJ omesser ovaeaqqy 1:"_}"1‘,1"”’ -'_'“" _",:‘.".}.. - 20erce - aon H.‘.“ ome l ovaeoon :','_Ilik‘

pecerra —jyhan == minervaca minervagat - ninervapro - QONZalo == |Decerra —jyhan == minervaca ninervagat == minervapri

- WO wsullana == lglinc =y

Jobs Running by User

9/16 16:00 o970 2/18 00:00 2/18 08:00 2/19 00:00 2/19 08:00
== aghosh12 jyhan == maramire minervacal minervadat minervapro == norrick

Even though spread jobs into three nodes, the performance with more than 500 jobs doesn’t look good

Summary of test / Question

* 500 jobs test with dev1 vs. dev2 doesn’t show much difference
— Changed parameter might not affect much for the performance (dev2 shows better performance)

* Test with 1500 jobs assigning 500 jobs to dev1, dev2, dev3 each didn’t have similar
performance with 500 jobs with one node

= |s there any limitation to run more than 500 jobs into three Galera clusters?
What is the limit for the number of jobs in each node?

e What is the best way to connect DB? Connect through Virtual IP address (VIP)?
* VIP has round-robin method to distribute the jobs into Galera cluster
* Round-robin method is sufficient for scalability jobs (good way for load balancing)??
* “Observed” or “Predictive” method is better?
* We might need to change the connection type of database in the job?
* Connection type now : hold connection until job is done — open and close connection
* Would it help if we gave DBAs some examples of the queries we’re running?
= DBASs can give an advice to improve the performance in queries
* Arrange another test with DBAs, so DBAs can diagnose the problem
* We suspect that uploading tables into DB (temp database) would cause the problem
= Will try to save tables into DB to avoid uploading procedure which causes the dead lock

e Usage of minervadb01.fnal.gov : used for LE data, read-only replica (v 5.1.41, MYISAM engine)
4

http://minervadb01.fnal.gov

